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Abstract
A generalized contour deformation method (CDM), which combines complex
rotation and translation in momentum space, is discussed. CDM gives accurate
calculation of two-body spectral structures: bound, antibound, resonant and
continuum states forming a Berggren basis. It provides a basis for full off-shell
t-matrix calculations both for real and complex input energies. Results for both
spectral structures and scattering amplitudes compare perfectly well with exact
values for the analytically solvable separable non-local Yamaguchi potential as
a testcase. Accurate calculation of antibound states in the Malfliet–Tjon and
the realistic CD–Bonn nucleon–nucleon potential are presented. Calculation
of antibound states in the CD–Bonn potential are not known to have been given
elsewhere.

PACS numbers: 03.65.Nk, 24.30.Gd

(Some figures in this article are in colour only in the electronic version.)

1. Introduction

In nuclear physics, as in atomic physics, the expansion of many-body wavefunctions on single-
particle bases, generated by a suitable potential has been a common practice. For a given
potential the single-particle eigenstates form a complete set of states,

1 =
∑

b

|ψnl〉〈ψnl| + 1

2

∫ ∞

−∞
dk k2|ψl(k)〉〈ψl(k)|. (1.1)

A proof of this completeness relation, more precisely known as the resolution of unity, is given
by Newton [1]. The relation also applies to the binary interaction of say two nucleons and
their relative motion. The sum is over the bound states in the system, while the integral is
over the positive energy continuum states. The infinite space spanned by this basis is given by
all square integrable functions on the real energy axis, known as the L2 space, which forms
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a Hilbert space. In the case of a confining harmonic oscillator potential there is an infinite
number of bound states and no continuum integral.

During the last decade the exploration of nuclear driplines has pushed traditional single-
particle methods to their limits of applicability. The traditional shell-model with harmonic
oscillator single-particle wavefunctions works well in the regime of well-bound nuclei. Moving
towards the driplines, however, the nuclei cease to be well bound, and coupling to continuum
structures plays an important role. A modification of the shell model where bound, resonant
and continuum states are treated on equal footing has been under development the last few
years, and has become known as the Gamow shell model; see [2–6]. The first attempt to also
include antibound states in a realistic nuclear calculation is that of Vertse et al [7], where the
role of antibound states in the pole RPA description of the giant monopole resonance was
investigated. Recently, the role of anti-bound states in the Gamow shell model description of
halo nuclei has been discussed [8].

The study of two-body resonant structures has a long history in theoretical physics. There
exists a variety of methods described in textbooks; see e.g. [1, 9–11]. Among the more popular
methods are those of analytic continuation; the complex scaling method (CSM) and the method
based on analytic continuation in the coupling constant (ACCC).

In this work, we consider an approach formulated for integral equations in momentum
space. The method is based on deforming contour integrals in momentum space, and is known
as the contour deformation or distortion method (CDM). It has been shown in [12] that a
contour rotation in momentum space is equivalent to a rotation of the corresponding differential
equation in coordinate space. The coordinate space analogue is often referred to as the
dilation group transformation or complex scaling. The dilation group transformation was
first formulated and discussed in [13, 14], and was developed to examine the spectrum of the
Green’s function on the second energy sheet.

The CDM formulated in momentum space is not new in nuclear physics. It was studied
and applied in the 1960s and 1970s; see, for example, [15–18], especially in the field of three-
body systems. Most of these references applied a contour rotation in momentum space. By
restricting oneself to a rotated contour certain limitations and restrictions however appear in
the equations, determined by the analytical structure of the integral kernels and potentials. In
[18] a more sophisticated choice of contour, based on rotation and translation, was applied to
the three-nucleon momentum space Faddeev equation for a separable Yamaguchi interaction.
This choice of contour made it possible to avoid the logarithmic singularities of the Faddeev
kernel and, hence, allowed for a continuation in energy to the non-physical energy sheet.

A revitalizing of the contour deformation method in momentum space is in place, given
the new theoretical challenges of dripline physics. CDM is a method which allows for accurate
and stable solutions of bound, anti-bound, capture and decay states. We consider a generalized
type of contour, allowing for an analytic continuation into the third quadrant of the complex
k-plane. Antibound and capture states near the scattering threshold may then be calculated at a
specified accuracy. This choice of contour may be regarded as belonging to the Berggren class
of contours [19]. Berggren [19], and later Lind [20], studied various completeness relations
derived by analytic continuation of the completeness relation, stated in equation (1.1), to the
complex plane. The Berggren completeness includes discrete summation over resonant as
well as bound states. Our choice of contour differs from recent applications of the Berggren
formalism (see e.g. [2–6]), in that the contour approaches infinity along complex rays in the
complex k-plane as opposed to contours which approach infinity along the real k-axis. We will
point out the intimate relationships between complex coordinate scaling, the general Berggren
basis and the method of continuation of the scattering equations to the second energy sheet by
contour deformation.
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Complex scaling in coordinate space has for a long time been used extensively in atomic
and molecular physics (see [21]). During the last decade it has also been applied in nuclear
physics, as interest in loosely bound nuclear halo systems has grown (see e.g. [22–24]).
Complex scaling in coordinate space is usually based on a variational method [21], and an
optimal variational basis and scaling parameters have to be sought. One of the disadvantages
of the coordinate space approach is that the boundary conditions have to be built into the
equations, and convergence may be slow if the basis does not mirror the physical outgoing
boundary conditions well.

There are several advantages in considering the contour deformation method in momentum
space. First, most realistic potentials derived from field theoretical considerations are given
explicitly in momentum space. Secondly, the boundary conditions are automatically built into
the integral equations. Moreover, the Gamow states (physical resonances) [9] in momentum
space are non-oscillating and rapidly decreasing, even for Gamow states with large widths,
far from the real energy axis, as opposed to the complex-scaled coordinate space counterpart.
The latter states are represented by strongly oscillating and exponentially decaying functions.
Finally, numerical procedures are often easier to implement and check. Convergence is easily
obtained by just increasing the number of integration points in the numerical integration.

If one restricts the deformation to a rotation of the contour, as studied in [15–17, 25, 26],
one is not able to expose antibound states in the energy spectrum, since the maximum allowed
rotation angle does not allow rotation into the third quadrant of the complex momentum plane.
This limitation is sometimes used as an argument for advocating other approaches, such as
the ACCC method; see the recent work of Aoyama [27]. We will show that by distorting the
contour by rotation and translation into the third quadrant of the complex k-plane, we are
able to introduce a new feature to the complex scaling method, namely accurate calculation
of antibound states as well as bound and resonant states. CDM represents also an alternative
to the so-called exterior complex scaling method. The exterior complex scaling method was
just formulated to avoid intrinsic non-analyticities of the potential, and in this way calculation
of resonances in non-dilation analytic potentials are made possible (see [21] and references
therein).

The contour deformation method has also been applied to the solution of the full off-shell
scattering amplitude (t-matrix); see [12, 16, 17, 28]. By rotating the integration contour, an
integral equation is obtained with a compact integral kernel. This has numerical advantages
as the kernel is no longer singular. As discussed in [16], a rotation of the contour gives
certain restrictions on the rotation angle and maximum incoming/outgoing momentum in the
scattering amplitude. We will again show that our extended choice of contour in momentum
space avoids all these limitations and that an accurate calculation of the scattering amplitude
can be obtained. Thus, the method we advocate allows us to give an accurate calculation of the
full energy spectrum. Moreover, it yields a powerful method for calculating the full off-shell
complex scattering amplitude (t-matrix). It is also rather straightforward to extend this scheme
to in-medium scattering in, for example, infinite nuclear matter.

In section 2, we outline the CDM in momentum space and discuss its relation to the
Berggren completeness, deriving the states of the Malfliet–Tjon nucleon–nucleon interaction
as an example. The corresponding Berggren basis is used for convergence studies. As
an additional example the states of the CD–Bonn interaction [29] are also calculated, the
antibound state for the first time. In section 3, the Berggren representation of the full off-
shell t-matrix is given, together with various applications of CDM to the scattering of the
Malfliet–Tjon interaction [30]. Section 4 gives expansion of the eigenvalue problem for the
analytically solvable separable non-local Yamaguchi [10, 31] interaction on a Malfliet–Tjon
Berggren basis. Comparison between analytic and numerical results are given for antibound
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and resonant states. Finally, in section 5, we study the expansion of a resonant state generated
by a Gaussian interaction on a Berggren basis given by the Malfliet–Tjon interaction. The
energy and wavefunction are studied as a function of cutoff in momentum/energy of the
complex continuum states entering the Berggren completeness.

2. Berggren spectral decomposition in momentum space

2.1. The contour deformation method

The momentum space Schrödinger equation, for relative motion in partial wave l in a central
potential, reads

h̄2

2µ
k2ψnl(k) + 2

π

∫ ∞

0
dq q2Vl(k, q)ψnl(q) = Enlψnl(k). (2.1)

With real momenta the momentum space Schrödinger equation corresponds to a hermitian
Hamiltonian. The energy eigenvalues will in this case always be real, corresponding to discrete
bound states (Enl < 0) and a continuum of scattering states (Enl > 0). Resonant and antibound
states can never be obtained by directly solving equation (2.1), as it stands. In a sense, one
can say that the spectrum of a hermitian Hamiltonian does not display all information about
the physical system.

Generalizing k to the complex k-plane, i.e. k = Re[k] + iIm[k], an integral equation for
the bound state wavefunctions appearing in equation (2.1) may be written as

ψnl(k) = 1

Enl − k2/2µ

2

π

∫ ∞

0
dq q2Vl(k, q)ψnl(q). (2.2)

ψ(k) is analytic in the upper-half complex k-plane corresponding to the physical energy sheet,
except for simple poles at the bound state energies (positive imaginary k) and a cut in the
complex E-plane along the real energy axis. The interaction between the particles, V l(k, q)
is assumed to be spherically symmetric without tensor components. Our discussion does not
involve the particle spins explicitly. The Fourier–Bessel transform of a non-local potential
V l(r, r ′) in coordinate space is given by

Vl(k, k′) =
∫ ∞

0
dr r2

∫ ∞

0
dr′ r′2jl(kr)jl(k

′r′)Vl(r, r′). (2.3)

In the case of a local potential,

Vl(r, r′) = δ(r − r′)
r2

Vl(r),

and equation (2.3) reduces to

Vl(k, k′) =
∫ ∞

0
dr r2jl(kr)jl(k

′r)Vl(r). (2.4)

The interaction in momentum space is given in units of MeV fm3.
In the following we study and explore the resonant and antibound state spectra by the

contour deformation method.
Antibound states are not to be interpreted as physical states, i.e. a quantal system cannot

be put in such a state. Nevertheless, antibound states close to the scattering threshold may
have impact on observables such as phase shifts. For a system with antibound states close to
the scattering threshold, a large enhancement of the scattering cross-section will take place.
This enhancement can be understood in terms of the antibound states; see [8] for a discussion
of scattering wavefunctions close to threshold in the presence of a nearby bound or antibound
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state. From a mathematical point of view an antibound state is defined as a pole of the scattering
matrix located on the negative imaginary k-axis.

Resonant states can be divided into two subclasses: decay and capture states. Decay states
are associated with poles of the scattering matrix located in the fourth quadrant of the complex
k-plane. They have outgoing boundary conditions at infinity. Capture states are on the other
hand associated with poles in the third quadrant of the complex k-plane, and have incoming
waves at infinity. Naturally only capture states can be given physical meaning. Capture states
may be interpreted as quasi-stationary states formed inside a potential barrier in the positive
energy regime.

Resonant states will have a definite lifetime before they decay through the barrier.
This lifetime varies inversely with the probability of tunnelling through the barrier, and the
probability of tunnelling is given by the width � of the resonant states. The width is in turn
given by the absolute value of the imaginary part of the resonance energy squared. The closer
the resonance energy is to the real energy axis, the smaller the width becomes and the lifetime
of the quasi-stationary states increases. This indicates that resonant states with energy close
to the real energy axis may have larger impact on observable quantities, e.g. phase shifts and
scattering cross-sections. Physical decay states are those with positive real energy. Gamow
states are to be understood as physical resonant decay states close to the real energy axis, i.e.
resonant states with narrow widths. In [9] a more detailed discussion of the interpretation and
physical understanding of resonant states is given.

Antibound and resonant states are located on the second (non-physical) energy Riemann
sheet. The momentum is a multivalued function of energy; k(E) = √

2µE. Multivalued
functions may be represented by Riemann surfaces of branch cuts. The upper-half complex
k-plane and the lower-half complex k-plane maps into the same complex energy plane. This
problem is resolved by defining a Riemann surface with two sheets. The physical energy
sheet (first sheet) is a mapping of the upper-half complex k-plane while the so-called non-
physical energy sheet (second sheet) is a mapping of the lower-half complex k-plane (see e.g.
[1]). To reach into the non-physical energy sheet where antibound and resonant states are to
be found one has to analytically continue the scattering equations through the cut along the
real energy axis and into the lower-half complex energy plane. We study here the analytic
continuation of equation (2.1) into the non-physical sheet by the contour deformation method.
Such a transformation of equation (2.1) can be obtained by an analytic continuation of the
completeness relation of equation (1.1) to the complex k-plane.

Resonances are not normalizable in the normal sense. Due to their exponentially growing
and oscillatory behaviour along the real r-axis the norm integral is divergent. Nevertheless,
divergent integrals may be given a definite value by some regularization procedure. Zel’dovich
[11] was the first to propose such a regulariztion procedure for making the norm integrals
of resonances definite by adding a convergence factor exp(−εr2) and then taking the limit
ε → 0. This procedure is most convenient in analytic cases; in numerical applications taking
the limit ε → 0 is difficult. Another regularization procedure which is more tractable from a
numerical standpoint, is the method proposed by Gyarmati and Vertse [32]; they regularized
the norm integrals by a complex rotation in the radial coordinate after a finite radial distance
R. This procedure introduces an exponential damping to the growing oscillatory behaviour
of the resonant wavefunctions, and numerical implementation of expectation values involving
resonant states is made possible.

In the 1960s, Berggren discussed the use of resonant states in eigenfunction expansions
of scattering and reaction amplitudes; see [19, 33–35]. He used the regularization procedure
by Zel’dovich for resonant states. The resonant states form an incomplete set of states, and for
completeness the non-resonant continuum states has to be taken into account. Berggren found
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Im k

Re k

C

C−

+

Figure 1. Plot of a general inversion symmetric contour C = C+ + C− in the complex k-plane:
C+ is given by the solid line, while C− is given by the broken line.

that the regularized resonant states along with a set of non-resonant continuum states defined
on deformed contours in the complex momentum plane, form a bi-orthogonal set of states.
This bi-orthogonal set can in turn be used as expansion basis for various physical quantities,
where the resonant character of the system is displayed explicitly.

The method Berggren studied is based on analytic continuation of the completeness
relation (see equation (1.1)) to the complex k-plane by deforming the integration contour. We
give here a brief summary of the procedure which considers the integral in equation (1.1) as an
integral over the contour � = S + C, where the contour C is defined on the real k-axis from −∞
to +∞ and the contour S is given by an infinite semicircle in the upper-half complex k-plane
closing the contour �. The sum over bound states are then the residues calculated at the poles
of the scattering matrix along the positive imaginary k-axis. The integration along the real axis
may then be distorted into some inversion symmetric contour, meaning that if k is on C, then
−k is also on C. By redefining the completeness relation on distorted contours in the complex
k plane, one can show by using Cauchy’s residue theorem that the summation over discrete
states will in general include bound, antibound and resonant states [20, 33]. By this procedure
the norm integral of the resonant states is regularized along the distorted contours. In [20]
completeness relations for various inversion symmetric contours in the complex k-plane were
derived and discussed; all inversion symmetric contours will hereafter be labelled Berggren
class of contours. The eigenfunctions defined along distorted contours form a biorthogonal
set, and the normalization follows the generalized c-product [20, 21]

〈〈ψnl|ψn′l〉〉 ≡ 〈ψ∗
nl|ψn′l〉 = δn,n′ . (2.5)

The most general completeness relation on an arbitrary inversion symmetric contour (see
figure 1) C = C+ + C− can then be written as

1 =
∑
n∈C

|ψnl〉〈ψ∗
nl| +

∫
C+

dk k2|ψl(k)〉〈ψ∗
l (k)|, (2.6)

where C+ is the distortion of the positive real k-axis, and C− the distortion of the negative real
k-axis.

Here the symmetry of the integrand has been taken into account, that is∫
C−

dk k2|ψl(k)〉〈ψ∗
l (k)| =

∫
C+

dk k2|ψl(k)〉〈ψ∗
l (k)|.

The summation is over all discrete states (bound, antibound and resonant states) located in the
domain C, defined as the area above the contour C, and the integral is over the non-resonant



The contour deformation method in momentum space 8997

complex continuum defined on C+. The space spanned by the basis given in equation (2.6)
includes all square-integrable functions defined in the domain C, defining a generalized Hilbert
space. The complete basis could then be used to expand other resonant and antibound states
(belonging to another Hamiltonian), defined in the region above the distorted contour. Such
a complete basis is more flexible than a complete basis defined for only real energies. From
the general completeness relation (2.6) one can deduce the corresponding eigenvalue problem,
H |ψ〉 = E|ψ〉. This eigenvalue problem represents the analytically continued Schrödinger
equation onto a general distorted contour C+ in the complex k-plane. The Hamiltonian will in
this case be complex and non-hermitian, as Gamow and antibound states are included in the
spectrum.

Above we discussed how a complex and non-hermitian eigenvalue value problem may
be obtained by analytic continuation of the completeness relation through the cut and into
the second (non-physical) energy sheet. In close analogy with the above discussion on
completeness relations, the momentum space Schrödinger equation (2.1), defined on the
positive real k-axis, may be directly continued to the lower-half complex k-plane. Thereafter
a general completeness relation, like equation (2.6), may be inferred. We must emphasize that
the requirement that the distorted contour must be inversion-symmetric is not sufficient when
continuing the Schrödinger equation (2.1) into the third quadrant of the complex k-plane.

In analytic continuation of integral equations we state the general rule (see e.g. [9]):
Continuing an integral in the complex plane, the moving singularities of the integrand

must not intercept the integration contour.
Applying the contour deformation method to the momentum space Schrödinger equation

(2.1), we must deform the contour in such a way that an intercept with the singularities is
avoided. The only moving singularities of the integral kernel in equation (2.1) are contained
in the potential. The analytic continuation of equation (2.1) to the lower-half complex energy
plane is a stepwise process where overlapping domains of analyticity are created. Each step
of analytic continuation of the Schrödinger equation to the complex energy plane involves the
following three steps:

(i) The analyticity domain, D1, for the wavefunction ψ(k) is determined (see equation (2.2)).
Except at the spectrum of the Hamiltonian, the analyticity of ψ(k) is given by the potential
V (k, q), where q is real in the first step.

(ii) Having determined the analyticity region D1 in the lower-half k-plane, the integration in q

along the real axis may be distorted onto a contour C1
+ in the lower-half complex k-plane.

All points on the contour C1
+ must be contained in the analyticity domain D1.

(iii) A new analyticity domain D2 is determined for the wavefunction ψ(k). The domain D2
is again determined by the singularity structure of the potential V (k, q) where q is now
on the distorted contour C1

+. If and only if the contour C1
+ also lies in the new domain

of analyticity D2, we may choose k on C1
+ as well. This gives a closed integral equation,

and the Schrödinger equation is transformed onto the contour C1
+.

This process of analytic continuation may be continued iteratively uncovering larger domains
of interest in the complex energy plane. The choice of contour must therefore be based on the
following.

• The contour must be inversion-symmetric.
• The contour must be located in overlapping domains of analyticity (see step (iii) above) and

the wavefunction must admit analytic continuation onto the contour C+.
• The choice of contour must be based on an a posteriori knowledge of poles in each partial

wave of the scattering matrix.
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Im  k

Re  k

L1 L2

max k

C

D

A

B

Figure 2. Contour C+
R = L1 + L2 is given by the solid line, while the contour CR

− is given by the
broken line. The contour CR = C+

R + C−
R is clearly inversion-symmetric. The two-body spectrum

which is exposed by this contour is marked by filled circles and the excluded spectrum by open
circles. The full spectrum includes bound states (B), antibound (A), decay (D) and capture (C)
resonant states.

The analytically continued equation (2.1) on a general inversion symmetric contour then
takes the form

h̄2

2µ
k2ψnl(k) + 2

π

∫
C+

dq q2Vl(k, q)ψnl(q) = Enlψnl(k). (2.7)

Here both k and q are defined on the inversion symmetric contour C+ in the lower-half complex
k-plane, giving a closed integral equation. The eigenfunctions satisfy the general completeness
relation given in equation (2.6) and are normalized according to the general c-product.

In the following we study two distorted contours C+
R and C+

R+T . These contours can be
regarded as a special case of the Berggren class of contours. The contour C+

R is obtained by a
phase transformation (rotation) into the lower-half complex k-plane while the second contour
C+

R+T will be based on rotation followed by translation in the lower-half complex k-plane.
These contours approach infinity along complex rays, and not along the real k-axis, although
as |k| → ∞ they should approach the real k-axis to define a closed integration contour. It
has previously been assumed as a requirement for the choice of distorted contours that they
approach infinity along the real k-axis (see e.g. [3]).

First we consider the contour C+
R given by two line segments L1 and L2. Line L1 is given by

k = |k|exp(−iθ) where |k| ∈ [0, kmax], L2 by k = kmax exp(−iθ); here kmax is a real and positive
constant. One can easily show that for an exponentially bounded potential in coordinate space
the integral in equation (2.1) along the arc L2 will tend to zero for kmax→ ∞. In this case the
contour C+

R reduces to the line L1. Figure 2 shows the contour C+
R along with the exposed and

excluded two-body spectrum in the complex k-plane, which this choice of contour implies.
The contour C+

R is part of the inversion symmetric contour CR = C+
R + CR

−, also indicated in
figure 2.

Most potentials are of such analytic structure; that an analytic continuation into the fourth
quadrant of the complex k-plane is possible, except on the imaginary k-axis. One may then
uncover arbitrary large portions of the fourth quadrant of the second energy sheet, where
resonances may be located. The analytically continued equation (2.7) onto the contour CR

+

is obtained by the transformation k = |k|exp(−iθ) and q = |q|exp(−iθ). In this case, equation
(2.7) is the momentum space version of the complex-scaled Schrödinger equation in coordinate
space, discussed in e.g. [12]. A rotation in momentum space, |k|exp(−iθ), is equivalent to the
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kmax

Im k

Re k

L1

L2

L3

B

B

DC
A

A

Figure 3. Contour C+
R+T = L1 + L2 + L3 is given by the solid line, while the contour CR+T

− is
given by the broken line. The contour CR+T = CR+T

+ +CR+T
− is clearly inversion-symmetric. The

two-body spectrum which is exposed by this contour is marked by filled circles (•) and the excluded
spectrum by open circles (◦). The full spectrum includes bound states (B), antibound (A), decay
(D) and capture (C) resonant states.

complex scaling r exp(iθ) in coordinate space. The phase transformation k → |k|exp(−iθ)
turns out to be a similarity transformation (see e.g. [36]). The restriction on the rotation angle
θ for the phase transformation may be shown to be θ < π/2. This implies that antibound states
cannot be included in the spectrum by this choice of contour.

Next we consider the contour obtained by rotation followed by translation in the lower-
half complex k-plane. The contour C+

R+T consists of three line segments. The line segment L1
is given by a rotation k = |k|exp(−iθ) with |k| ∈ [0, b], whereas L2 is given by a translation
k = Re[k] − b sin(θ)i with Re[k] ∈ [b cos(θ), kmax] and b determines the translation into the
lower-half k-plane and, finally, L3 is defined by k = kmax − Im[k]i with Im[k] ∈ [b sin(θ), 0].
For kmax →∞, the contribution to the integral in equation (2.1) along the line segment L3
will vanish, and the contour CR+T

+ reduces to the line segments L1 and L2. Figure 3 shows
the contour CR+T

+ = L1 + L2 + L3 along with the exposed and excluded two-body spectrum
which this choice of contour implies. The contour CR+T

+ is part of the inversion symmetric
contour CR+T = CR+T

+ + CR+T
− clearly seen in the figure.

Whether one chooses to solve the Schrödinger equation on the contour CR
+ or on the contour

CR+T
+ depends on the problem under consideration. The singularity structure of a general

potential is such that an analytic continuation onto a rotated contour in the third quadrant may
not be achieved. However, by choosing a modified contour like CR+T

+ which avoids the non-
analytic regions of the potential this may be possible. By solving the Schrödinger equation on
the distorted contour CR+T

+ rotated into the third quadrant of the complex k-plane, we expose
a part of the negative imaginary k-axis where antibound states may be located. In doing this
we must emphasize that at the same time we are excluding a part of the positive imaginary
k-axis where bound states may be located. This reminds us that the contour should be chosen
relative to the partial wave component under study, i.e. a separate analysis has to be made for
each partial wave.

2.2. Analyticity of the Malfliet–Tjon interaction in the complex momentum plane

As an illustration we consider the frequently used Malfliet–Tjon nucleon–nucleon (NN)
interaction [30], which is a superposition of Yukawa terms. The interaction is in a coordinate
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Figure 4. Plot of the l = 0 and the l = 1 Malfliet–Tjon interaction in coordinate space with angular
momentum barrier included.

representation, given by

V(r) = VR

exp (−µRr)

r
+ VA

exp (−µAr)

r
. (2.8)

Here VR and VA are the repulsive and attractive strength of the interaction, respectively.
We employ conventional units, i.e. r (fm), k (fm−1), µR,A (fm−1) and VR,A (MeV fm). The

interaction in coordinate space is given in units of MeV, while in momentum space in units of
MeV fm3. The reduced neutron–proton mass is mnpc

2 = 938.926/2 MeV.
It is known that the 1S0 channel in the nucleon–nucleon interaction supports an antibound

state near the scattering threshold. By choosing interaction parameters

VR = 7.291 × h̄c ≈ 1438.71 MeV fm, µR = 613.69/h̄c ≈ 3.11 fm−1,

µA = 305.86/h̄c ≈ 1.55 fm−1, VA = −2.6047 × h̄c ≈ −513.98 MeV fm,

the Malfliet–Tjon interaction resembles the form of a realistic nucleon–nucleon interaction
with attractive and repulsive parts in the 1S0 channel. It reproduces the 1S0 phase shift in
nucleon–nucleon scattering rather well, and supports an antibound state near the scattering
threshold. In the following the parameters VR, µR and µA are fixed to the values given above.
We will however allow for a variation of the attractive strength VA. This interaction will then
still support bound and antibound states for s-waves, and for higher angular momentum
resonances may also appear. Figure 4 gives a plot of the l = 0 and the l = 1 Malfliet–
Tjon interaction in coordinate space with an angular momentum barrier included. For a given
partial wave l, the Fourier–Bessel transform of equation (2.8) gives an analytic expression

Vl(k, k′) = VR

1

2kk′ Ql(xR) + VA

1

2kk′ Ql(xA). (2.9)

Here Ql(x) is the Legendre function of the second kind. The arguments of the Legendre
function are xR, A = (k2 + k ′2 + µR, A

2 )/2kk ′. Figure 5 gives a plot of the l = 0 Malfliet–Tjon
interaction in momentum space for the interaction parameters given above.
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Figure 5. Plot of the l = 0 Malfliet–Tjon interaction in momentum space, for real k, k ′.

We will give a demonstration of how the momentum space Schrödinger equation for the
Malfliet–Tjon interaction may be continued to the non-physical energy sheet, i.e. the lower-
half complex k-plane. The only moving singularities of the integral kernel in equation (2.7)
are contained in the interaction itself; see equation (2.9). The singularity structure of the
interaction is that of the Legendre functions. The Legendre functions are singular for x = ±1,
and this determines the analyticity region of the interaction in the complex k-plane. Thus
equation (2.9) is singular for

(k − k′)2 + µ2
R,A = 0 (2.10)

and

(k + k′)2 + µ2
R,A = 0. (2.11)

Equation (2.10) is satisfied for

Re[k] = Re[k′] ∧ Im[k] = ±µ + Im[k′],

and equation (2.11) for

Re[k] = −Re[k′] ∧ Im[k] = ±µR,A − Im[k′].

For k real and k ′ complex, we see from equation (2.11) that the interaction is singular for
Im[k ′] = ±µR,A. In the first step of the continuation we keep k real and distort the path of
integration into some contour C1

+ in the analyticity domain D1 : −µ < Im[k] < µ, where we
have defined µ = min[µR, µA]. This defines a new analyticity domain in the complex k-plane,
determined by the analytic structure of V l(k, k ′), where k ′ is defined on the contour C1

+, i.e.
D2 : −µ −C1< Im[k] < µ − C1. If the distorted contour C1

+ lies in the overlapping domain
D1 ∩ D2, k may be defined on the contour C1

+ as well, giving a closed integral equation.
This procedure may be continued ad infinitum, uncovering the complete fourth quadrant of the
complex k-plane. Solving the eigenvalue problem by the contour deformation method one may
choose a purely rotated contour CR

+, or a rotated + translated contour CR+T
+ , where θ < π/2.

Both contours will expose the resonant structures in the fourth quadrant of the complex k-plane.
For antibound states in the Malfliet–Tjon interaction, one must choose a contour of the

type CR+T
+ which consists of a rotation into the third quadrant and a finite translation in the

lower-half complex k-plane. It can be easily shown that the translated part of the contour
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Figure 6. The white area gives the domain of overlapping analyticity for the momentum space
Schrödinger equation for a rotated + translated contour, for a translation |Im[k]| > µ/2. The
contour C+

R+T is partly located outside the overlapping analyticity domain D1 ∩ D2.

C

complex k−plane

−µ

µ

R+T

−µ/2

Figure 7. The white area gives the domain of overlapping analyticity for the momentum space
Schrödinger equation for the CR+T contour, with a translation |Im[k]| < µ/2. The contour is
located inside the overlapping analyticity domain D1 ∩ D2.

CR+T
+ has to be bounded by |Im[k]max| < µ/2. If the translation into the complex k-plane

exceeds µ/2, it is not possible to construct overlapping domains of analyticity which contain
the distorted contour; see figure 6 for an illustration of this point. Figure 7 shows how the
distorted contour CR+T

+ is contained in the overlapping analyticity domains, D1 ∩ D2, for a
translation |Im[k]| < µ/2.

By imposing a lower bound on the translated line segment CT , given by |Im[k]| < µ/2, an
exploration of antibound states is possible for the Malfliet–Tjon interaction. This limitation of
the translation into the lower-half k-plane for the Malfliet–Tjon interaction is related to what
is known as the Yukawa cut; in [1] it is shown that the Yukawa interaction has a cut along
Im[k] � µ/2.

2.3. Antibound and resonant states of the Malfliet–Tjon interaction

Table 1 gives results of a calculation of the antibound neutron–proton s-wave (l = 0) state
of the Malfliet–Tjon interaction, for increasing strength VA = νA × h̄c, where we have
introduced the dimensionless quantity νA. With our choice of interaction parameters we have
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Table 1. Calculation of the neutron–proton antibound state as function of increasing attractive
strength νA for the s-wave Malfliet–Tjon interaction using the deformed integration path C+

R+T . νA

is dimensionless, and should be multiplied by h̄c to give the conventional units. The convergence
is illustrated by increasing the number of integration points. Column A used N1 = 30, N2 = 50
integration points; column B used N1 = 100, N2 = 100 integration points and column C used N1
= 150, N2 = 250 integration points. Energy E is given in units of MeV.

CDM [37]

A B C D
νA E E E E

−2.6047 −0.066674 −0.066653 −0.066653 −0.06663
−2.5 −0.310114 −0.310115 −0.310115 −0.31004
−2.3 −1.229845 −1.229845 −1.229845 −1.22970
−2.1 −2.679069 −2.678979 −2.678979 −2.67878

µ = min[µR, µA] = 1.55 fm, which gives a maximum translation into the lower-half
k-plane, Im[k]max = 1.55/2 ≈ 0.775 fm−1. This means that all antibound states on the second
energy sheet located in the energy domain E ∈ [−24.9, 0] MeV may be included in the
spectrum. For our calculation we use the rotation angle θ = 2π/3 and a translation |Im[k]| =
0.5 sin(2π/3) ≈ 0.433 fm−1. This choice of contour will uncover the portion E ∈ [−7.78, 0] of
the negative energy axis on the second (non-physical) energy sheet. We see that all antibound
states which may have an impact on phaseshifts may be included by this choice of contour. The
convergence of the calculations is illustrated by increasing the number of integration points.
As we obtained convergence of the antibound state energies by increasing the number of
integration points, we are led to conclude that our results are stable; furthermore, comparison
with the calculations of Elstel et al [37] shows only a small difference in the calculated values
for the antibound state. In [37] the energy spectrum on the second energy sheet was calculated
by analytic continuation of the t-matrix to the second energy sheet, and thereby searching for
poles.

In calculating resonant states in the Malfliet–Tjon interaction, any deformed contour in
the fourth quadrant of the complex k-plane will do, as long as the resonant states are enclosed
by the contour and the real k-axis. The Malfliet–Tjon interaction supports resonant states for
angular momentum l � 1, for which an angular momentum barrier is created and resonant
states may be formed inside the barrier.

The l = 1 partial wave component of the Malfliet–Tjon interaction, supports bound,
antibound and resonant states for a given νA. Figure 8 shows the trajectory of the imaginary
part of the bound and antibound state pole in the complex k-plane as a function of interaction
strength νA. The calculations were done on the contour CR+T

+ , rotated into the third quadrant
of the complex k-plane. For decreasing interaction strength the bound and antibound states
move toward the real axis. It can be seen that for a given interaction strength νA they are not
located symmetrically with respect to the real k-axis, the antibound state being closer to the
scattering threshold than the corresponding bound state. This is in agreement with the general
rule that, for l � 1, the number of antibound states between the loosest bound state and the
threshold is odd (see e.g. [1]). For |νA| ≈ 5.47, the bound and antibound states merge and
are both annihilated. This occurs at zero energy (Im[k] = 0 fm−1), and is defined as the
branching point. For |νA| < 5.47 the bound and antibound states develop into decay and
capture resonant states, respectively, moving symmetrically with respect to the imaginary
k-axis in the lower-half k-plane.

Figure 9 shows how the bound state of the system approaches the scattering threshold
and develop into decay resonant states for decreasing interaction strength νA. The interaction
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Figure 8. Plot of the bound and antibound state pole trajectory for the l = 1 component of Malfliet–
Tjon interaction. The location of the poles along the imaginary k-axis is plotted as a function of
interaction strength νA.
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Figure 9. Plot of pole trajectory in the complex energy plane for the l = 1 partial wave solution of
the Malfliet–Tjon interaction for νA varied from −5.6 to −2.9 in steps of 0.1.

strength νA is varied from −5.6 to −4.1 in steps of 0.1 MeV. For νA = −5.6 and νA = −5.5
we have a bound state. The calculations were performed with the contour CR+T

+ , rotated
θ = π/4 and translated |Im[k]| = 1.5 sin(π/4) fm−1 ≈ 1.06 fm−1 in the fourth quadrant
of the complex k-plane. Figures 10 and 11 show plots of the real and imaginary parts
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Figure 10. The square of the normalized resonance wavefunction at the resonance energy
E = 0.6554 − 0.1069i MeV for an interaction strength νA = −5.42 of the l = 1 Malfliet–Tjon
interaction. In the complex k-plane this resonant pole is located at k = 0.1261 − 0.0102i fm−1.
This state is calculated using the contour C+

R+T with rotation θ = π/5 and translation
Im[k] = −0.5 × sin(θ) fm−1. We have plotted the real and imaginary parts of the wavefunction
as functions of real momenta along the contour C+

R+T .
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Figure 11. The squared normalized resonance wavefunction at the resonance energy
E = 5.1804 − 3.1555i MeV for an interaction strength νA = −5 of the Malfliet–Tjon interaction.
In the complex k-plane this resonant pole is located at k = 0.3682 − 0.1033i fm−1. This state is
calculated using the contour C+

R+T with rotation θ = π/5 and translation Im[k] = −0.9 × sin(θ).
We have plotted the real and imaginary parts of the wavefunction as a function of real momenta
along the rotated contour.
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Figure 12. The square of the normalized resonance wavefunction defined along the real k-axis.
The resonance energy is E = 0.6554 − 0.1069i MeV for an interaction strength νA = −5.42 in
the l = 1 Malfliet–Tjon interaction. In the complex k-plane, this resonant pole is located at k =
0.1261 − 0.0102i fm−1.

of the squared normalized resonance wavefunction at the resonance energies E =
0.6554 − 0.1069i and 5.1804 − 3.1555i MeV corresponding to the interaction strengths
νA = −5.42 and −5, respectively. The wavefunction is plotted as a function of real momenta
along the contour CR+T

+ . In the complex k-plane, the resonance energies E = 0.6554 − 0.1069i
and 5.1804 − 3.1555i MeV corresponds to k = 0.1261 − 0.0102i and 0.3682 − 0.1033i fm−1,
respectively. We see that the peak of real part of the squared resonance wavefunction is located
around the real part of the resonant pole in the complex k-plane. The imaginary part of the
wavefunction changes sign in the neigbourhood of the resonant pole.

The squared resonance wavefunctions plotted in figures 10 and 11 are not to be interpreted
as physical momentum distributions, as they depend on the distorted contour. The physical
momentum distribution of a resonant state must be defined along the real k-axis. The Berggren
basis contains bound, antibound, resonant and non-resonant continuum states which are defined
along the distorted contour. The transformation of these states to the real energy axis is readily
done by the integral equation (2.2). All quantities on the right-hand side of equation (2.2) are
known, and the integration is over the distorted contour. For k real, we get ψnl(k) along the
real k-axis or equivalently along the real physical energy axis. Figures 12 and 13 show plots
of the squared resonance functions for νA = −5.42 and −5 respectively, along the real k-axis.
In figure 12, an extreme peaking of the wavefunction is observed at the real energy part of the
resonant pole in the complex k-plane. This is due to the small imaginary part of the pole, and
the resonance pole is located close to the real k-axis.

On the other hand, for νA = −5, the behaviour of the resonance wavefunction in figure 13
is smooth and well behaved along the real k-axis. In this case, the resonance pole is rather far
from the real k-axis, and no singular behaviour is observed. The calculation of resonant states
along the real axis become numerically unstable for resonances with narrow widths. This is
easily seen from equation (2.2), where the wavefunction becomes ill-behaved for poles close
to the real axis.



The contour deformation method in momentum space 9007

0 0.2 0.4 0.6 0.8 1
−30

−25

−20

−15

−10

−5

0

5

10

15

20

k fm−1

ψ
2
(k

)

Im[ψ2(k)]
Re[ψ2(k)]

Figure 13. The squared normalized resonance wavefunction defined along the real k-axis. The
resonance energy is E = 5.1804 − 3.1555i MeV for an interaction strength νA = −5 of the Malfliet–
Tjon interaction. In the complex k-plane, this resonant pole is located at k = 0.3682 − 0.1033i fm−1.

2.4. 1S0 antibound states of the CD–Bonn interaction

As an example of a currently used realistic interaction we present a calculation of the 1S0
antibound states in the charge-dependent Bonn interaction (CD–Bonn). The CD–Bonn
interaction is given in [29]. The tensor component of the CD–Bonn interaction couples angular
momentum, l = j − 1 and j + 1, in the spin triplet channel. It is straightforward to include
this coupling in the formalism outlined above.

The realistic nucleon–nucleon interaction does not have a resonant structure in the low
energy region E < 300 MeV. It does however support antibound states in the 1S0 isospin triplet
channel and a bound state in the coupled isospin singlet channel (the deuteron) 3S1 − 3D1.
We compare the calculated antibound state locations in the complex k-plane with the values
obtained by the effective range approximation (see [1, 9]). In the following, we do not include
Coulomb effects when considering the isospin tz = −1 channel (proton–proton scattering).

The effective range approximation for the s-wave poles is given by

k = −i

[√
2

rNN |aNN | + 1

r2
NN

− 1

rNN

]
. (2.12)

The theoretical (see below) and experimental values [29] for the 1S0 scattering lengths aNN

and effective range rNN are given in table 2.
The antibound state poles are located on the negative imaginary k-axis. Applying CDM

in this case, one has to choose a contour which extends into the third quadrant of the complex
k-plane. The distorted contour CR+T

+ proves to be suitable contour in this case. To apply CDM
by integrating along the contour CR+T

+ the singularities in the CD–Bonn interaction has to be
determined.

The CD–Bonn interaction is given explicitly in momentum space. The derivation of
the interaction is based on field theory, starting from Lagrangians describing the coupling
of the various mesons of interest to nucleons [29]. The one-boson-exchange interaction is
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Table 2. Scattering lengths (a) and effective ranges (r) for the 1S0 channel, in units of fm. For the
proton–proton channel Coulomb effects are not included.

CD–Bonn Experiment

app −17.4602
rpp 2.845
ann −18.9680 −18.9 ± 0.4
rnn 2.819 2.75 ± 0.11
anp −23.7380 −23.740 ± 0.020
rnp 2.671 2.77 ± 0.05

Table 3. Calculation of antibound state energies in the 1S0 isospin triplet channel by the effective
range approximation (EFR) and the contour deformation method (CDM), in units of MeV.
Convergence is obtained in each isospin channel. Column A used N1 = 20, N2 = 30 integration
points, column B used N1 = 20, N2 = 50 integration points and column C used N1 = 30, N2 = 80
integration points. Energy E is given in units of MeV.

CDM EFR

A B C
T z E E E E

−1 (pp) −0.11766 −0.11761 −0.11761 −0.11763
1 (nn) −0.10070 −0.10069 −0.10069 −0.10070
0 (np) −0.06632 −0.06632 −0.06632 −0.06632

proportional to

V(k, q) ∝
∑

α = π0,π±,ρ,ω,σ1,σ2

V̄ α(k, q)F 2
α (k, q; �α). (2.13)

Both V̄ α(k, q) and Fα
2 (k, q; �α) contain terms of the form

1

(k − q)2 + m2
α

, (2.14)

which are of the Yukawa type. In a partial wave decomposition these Yukawa terms will
be composed of Legendre functions of the second kind, Ql(x), with x = (k2 + q2 + mα

2 )/2kq.
The analytic structure of the CD–Bonn interaction is then seen to be that of the Malfliet–
Tjon interaction, which was discussed above. The poles of the interaction are determined
by the various meson masses mα and cut-off masses �α. Considering the solution of the
eigenvalue problem by the contour deformation method using contour CR+T

+ , singularities
in the interaction appear for z = z ′ = ±imα/2. For a rotation into the third quadrant of the
complex k-plane, the maximum translation into the complex k-plane is then determined by the
smallest meson mass entering the potential, which is the π-meson, mπ0c2 = 134.9764 MeV.
For a given rotation into the third quadrant, i.e., θ � π/2, we get a restriction on the translation;
Im[k] < −134.9764/2/h̄c fm−1.

Table 3 gives results for the antibound states in the 1S0 channel by the contour deformation
method. A comparison with the effective range calculation of the antibound state poles
is also shown. The contour was rotated by an angle θ = 2π/3 into the complex k-plane
with a subsequent translation transformation given by Im[k] = −30 sin(5π/7)/h̄c fm−1 (or
Im[k] ≈ −0.12 fm−1) in the lower-half k-plane. This is sufficient to reproduce the antibound
states in the 1S0 channel, as they are known to lie very close to the scattering threshold,
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k ≈ −0.05i fm−1. By this contour the full energy spectrum is obtainable since it is known a
posteriori that the 1S0 channel supports only antibound states near the scattering threshold.
The convergence of the numerical calculated values is demonstrated by increasing the number
of integration points N.

3. Two-body scattering amplitude in a Berggren representation

3.1. Berggren expansion of the t-matrix

In effective interaction studies for finite nuclei the harmonic oscillator basis has served as
a standard expansion basis for the G-matrix. This basis may work well in cases where the
nucleons are well bound but less so near the nuclear driplines. The general Berggren basis has an
advantage in that it is generated from the Hamiltonian of the examined problem. Expansions
in this basis will increase the convergence drastically. In this section we will discuss the
solution for the full off-shell t-matrix and, hence, the full two-body scattering problem, by
expanding the two-body Green’s function in a complete set of Berggren states. The Berggren
representation of the scattering equations gives an analytic continuation in energy, from the
upper rim of the cut through the cut and into the non-physical energy sheet. This has relevance
for nuclear medium studies where the input energy is in general complex. In a nuclear medium
calculation the self-consistently determined quasiparticle energies are in general complex.

The t-matrix is defined in operator form by

t(ω) = V + VgII(ω)V (3.1)

or

t(ω) = V + VgII
0 (ω)t(ω). (3.2)

Here ω is the incoming energy, gII(ω) the resolvent, commonly known as the Green’s operator,
and g0

II(ω) the corresponding free Green’s operator. In operator form they are defined by

gII
0 (ω) = 1

ω − H0
, (3.3)

gII(ω) = 1

ω − H
. (3.4)

They are related through the Dyson equation

gII(ω) = gII
0 (ω) + gII

0 (ω)VgII(ω). (3.5)

The term H0 is the kinetic energy operator and H the full two-body Hamiltonian. The physical
interpretation of the Green’s functions is thatg0

II describes the propagation of two noninteracting
particles, whereas gII describes the propagation of two interacting particles in free space.

By expanding the unit operator on a complete set of physical eigenstates of H given in
equation (1.1), we can write the interacting Green’s operator as

gII(ω) =
∑

b

|ψb〉〈ψb|
ω − Eb

+
∫ ∞

0
dEc

|ψc〉〈ψc|
ω − Ec

. (3.6)

This is the spectral decomposition of the Greens’s function. Here b denotes the discrete
bound state spectrum and c the positive energy continuum. We see from this equation
that the interacting Green’s function is analytic in the entire complex energy plane, except
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at the spectrum of the Hamiltonian including a branch cut along the positive real energy
axis. In physical scattering, with outgoing waves at infinity, the energy has to approach
the cut from above, i.e. ω → E + iη. Approaching the cut from below, i.e. ω → E − iη
corresponds to incoming waves at infinity. The discontinuity of the Green’s function across the
cut is

gII(E + iη) − gII(E − iη) = −2πi|ψc〉〈ψc|. (3.7)

The Berggren representation of the Green’s function is obtained by expanding the unit
operator using the completeness relation given in equation (2.6). In this case the Green’s
operator takes the form

gII(ω) =
∑

α

|ψα〉〈ψ∗
α|

ω − Eα

+
∫

C+
dE

|ψ〉〈ψ∗|
ω − E

. (3.8)

Here α denotes bound, antibound and resonant states. The integration contour C+ denotes an
arbitrary inversion symmetric contour (see e.g. figure 1), and gives the non-resonant distorted
continuum contribution to the interacting Green’s function. If we neglect the non-resonant
continuum contribution to the Green’s function we get the resonant state expansion of the
Green’s function. Such expansions have been studied over the last decade for finite range
potentials (see e.g. [7, 38, 20]). The Green’s function given in equation (3.8) is continuous and
analytic in energy across the real axis and into the domain C of the lower part of the complex
energy plane. Equation (3.8) is therefore an analytic continuation in energy of the physical
Green’s function given in equation (3.6).

The Berggren representation of the t-matrix is obtained by inserting the interacting Green’s
function given by equation (3.8) into equation (3.1), giving

t(ω) = V + �t(ω) = V + �tR(ω) + �tC(ω). (3.9)

Here �tR(ω) is the resonant contribution while �tC(ω) is the non-resonant distorted continuum
contribution to the t-matrix. By projecting t(ω) on momentum states, and decomposing into
partial waves, the t-matrix elements tl(k, k ′; ω) can be expressed as one-dimensional integral
equations,

tl(k, k′, ω) = Vl(k, k′) + 4

π2

∫
C+

∫
C+

dq dq′ q2q′2Vl(k, q)gII(q, q′; ω)Vl(q
′, k′). (3.10)

This representation of the t-matrix is valid as long as we do not pass through any singularities
of the interaction potential by deforming the real k-axis into the distorted contour C+. The
interacting Green’s function on the inversion symmetric contour C+ is given by

gII(k, k′; ω) =
∑

α

ψα(k)ψα(k
′)

ω − Eα

+
∫

C+
dE

ψE(k)ψE(k′)
ω − E

. (3.11)

Equation (3.10) has the same analytic structure as the Green’s function of equation (3.8),
except for possible singularities in the interaction potential. Using equation (2.2), the on-shell
t-matrix may be written as

tl(k, k, ω = h̄2k2/2mnp) = Vl(k, k) +
∑

α

(ω − Eα)ψ
2
α(k) +

∫
C+

dE (ω − E)ψ2
E(k). (3.12)
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The s-matrix is given in terms of the on-shell t-matrix by

sl(k) = 1 − 2
mnp

h̄2 ik tl(k, k, ω). (3.13)

Here the resonant and non-resonant wavefunctions defined along the real k-axis enters the
equations. The absolute value of the s-matrix is then a valuable test on how accurate our
numerical calculations are. Applying CDM enables us to obtain tl(k, k ′; ω) for both real and
complex energies ω. The integral becomes non-singular on the deformed contour for real
and positive input energies ω, resulting in numerically stable solutions for physical two-body
scattering.

The Berggren representation of the t-matrix also allows for a separate study of the resonant
and continuum contributions. The limitation of this method is due to the fact that most potentials
in momentum space have singularities in the complex plane when one argument is real and the
other is complex. By applying contour CR

+, which is based on rotation into the complex plane,
in most cases there will be restrictions on both rotation angle (θ) and maximum incoming and
outgoing momentum (k, k ′) (see e.g. [16]). Using a contour of the typeCR+T

+ , we can avoid these
limitations by choosing the integration contour in such a way that the potential singularities
always will lie outside the integration contour and, therefore, do not give any restriction on
rotation angle and maximum incoming and outgoing momentum. By an appropriate choice
of contour, CDM gives an alternative to the standard principal value prescription in solving
for the t-matrix. In addition, it allows for a separate study of the resonant contribution to the
full scattering amplitude. In the case of narrow resonances, the resonant contribution to the
t-matrix will dominate strongly over the continuum contribution around the resonance energy.
This separation is motivated by the fact that the most interesting phenemenon taking place in
the continuum is the resonance phenomenon.

3.2. t-matrix for the Malfliet–Tjon interaction using a Berggren basis

In addition to giving accurate calculation of the complete energy spectrum on the second
sheet, CDM provides also a basis for a calculation of the fully off-shell two-body scattering
amplitude (t-matrix). Here we present calculations of the t-matrix and phase shifts for the
Malfliet–Tjon interaction using the CR+T

+ contour. The phase shifts are given in terms of the
t-matrix elements by

δl(k) = arctan
Im[tl(k, k; ω)]

Re[tl(k, k; ω)]
, (3.14)

where the input energy ω is given on-shell, i.e. ω = h̄2k2/2mnp. If the t-matrix is approximated
by the resonant part t ≈ �tR, one gets the famous Breit–Wigner approximation to the phase
shifts (see e.g. [9])

δl(k) ≈ δR(k) = arctan

(
�/2

E − ER

)
+ δb (3.15)

valid for narrow widths � and in a small energy range around the resonance energy. The
motivation for using the contour CR+T

+ in calculation of the t-matrix is based on the analytic
properties of the interaction. For real incoming and outgoing momenta we have to face the
problem of avoiding the singularity in the interaction V (k, k ′), located at Im[k] = ±µ/2.
By using the contour CR+T

+ this problem is solved, and stable solution of the t-matrix can
be obtained. Using the spectral decomposition of the Green’s function, a separate analysis
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Figure 14. Real part of continuum �T C(k) and resonant �T R(k) contributions to the on-shell
t-matrix, for the Malfliet–Tjon interaction with strength νA = −5.42 supporting a resonance at
energy E = 0.6554 − 0.1069i MeV.
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Figure 15. Imaginary part of continuum �T C(k) and resonant �T R(k) contributions to the on-
shell t-matrix, for the Malfliet–Tjon interaction with strength νA = −5.42 supporting a resonance
at energy E = 0.6554 − 0.1069i MeV.

of the resonant and continuum contributions can be performed. We will see below that
in the case of a short-range interaction of the Yukawa type, the continuum contribution is
non-neglible in most of phase-space, except in a small phase volume around the resonance
energy.

Figures 14 and 15 give plots of the real and imaginary parts of �t, �tC and �tR.
The t-matrix elements were evaluated on-shell. The calculations were done for νA = −5.42
and l = 1 Malfliet–Tjon interaction, giving a resonance pole at k = 0.13 − 1.02i fm−1 in
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Figure 16. Plot of phase shift for the Malfliet–Tjon interaction with strength νA = −5.42 supporting
a resonance at energy E = 0.6554 − 0.1069i MeV. The broken line gives the resonant contribution
to the phase shift.

Table 4. Numerical calculations of the absolute value of the s-matrix for various on-shell momenta.
The calculations were done with the l = 1 Malfliet–Tjon interaction given on the distorted contour
CR+T

+ rotated θ = π/5 and translated Im[k] = −1.5 sin(π/5) fm−1 ≈ −0.8817 fm−1 into the fourth
quadrant of the complex k-plane.

k (fm−1) |sl(k)|
0.1 0.9999985
1 0.9999999
2 0.9999998
3 0.9999996
4 1.0000017

the complex k-plane. The calculations used a rotation angle θ = π/5 and a translation
|Im[k]| = 1.5 sin(π/5) ≈ 0.8817 fm−1, and 50 integrations points along the line segments L1
and L2, respectively. The resonance energy is located rather close to the real energy axis, and
that the resonance part of the t-matrix dominates strongly over the continuum part around
the real part of the pole Re[k] = 0.13 fm−1. This behaviour justifies the Breit–Wigner
approximation to the phase shifts in this energy region.

Figure 16 shows the complete phase shifts, δ, including both non-resonant continuum
and resonant contributions, and the resonant contribution, δR. In the vicinity of the resonance
energy, δR gives a good approximation to the full phase shift. Table 4 gives the absolute value of
the s-matrix (see equation (3.13)) for various on-shell momenta, and we see that the numerical
accuracy is rather good. The accuracy increases with number of integration points used in the
calculations.

By decreasing the interaction strength νA the resonant poles moves further down into
the lower-half k-plane. The contribution to the phase shifts and the t-matrix elements from
resonances far from the real energy axis is expected to be small. Figure 17 shows the complete
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Figure 17. Plot of phase shift for the Malfliet–Tjon interaction with strength νA = −5, supporting
a resonance at energy E = 5.1804 − 3.1555i MeV. The broken line gives the resonant contribution
to the phase shift.

and the resonant part of phase shifts for the νA = 5 Malfliet–Tjon interaction, for a ‘deep-lying’
resonance.

4. An analytically solvable non-local two-body potential

4.1. Energy spectrum and t-matrix for the Yamaguchi interaction

It is instructive to check the CDM for an analytically solvable case, that of the non-local
separable potential given by Yamaguchi [31]; it models s- and p-waves. The coordinate
representation of the Yamaguchi interaction is given by a product of two Yukawa terms
(see e.g. [10]). A separable interaction in coordinate space gives a separable interaction
in momentum space, and is analytically solvable (see e.g. [1] for a demonstration). The
Yamaguchi interaction therefore admits analytic solution of the full off-shell t-matrix and
the t-matrix poles, corresponding to the energy spectrum. The Yamaguchi s-wave potential
supports bound and antibound states, while the Yamaguchi p-wave potential supports bound,
antibound and resonant states. TheYamaguchi potential is therefore useful in modelling loosely
bound two-body systems which may have a rich resonant state structure, and for checking the
numerics in calculations of the t-matrix and the energy spectrum.

The s-wave Yamaguchi potential has the form

V0(k, q) = −λg0(k)g0(q), (4.1)

where

g0(k) = 1

k2 + β2
. (4.2)

The full off-shell t-matrix for the s-wave potential reads [1]

t0(k, q; ω) = −λ
g0(k)g0(q)

1 − �0(ω)
, (4.3)
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where we have defined

�0(ω) ≡ λ
2

π

∫ ∞

0
dk

k2(g0(k))
2

h̄2k2/2m − ω
. (4.4)

The integral �0(ω) can be evaluated analytically. For ω = h̄2k0
2/2m we get

�0(k0) = λ
m

h̄2

(β + ik0)
2

β(β2 + k2
0)

2
. (4.5)

For bound and antibound states the t-matrix poles are located along the positive and negative
imaginary k-axis, respectively. Writing κ = −ik0, where κ is a real quantity, we can solve for
the t-matrix poles as zeros of the denominator, 1 − �0(k0) = 0, giving in terms of κ,

κ = −β ±
√

λm

βh̄2 , (4.6)

and we see that the poles are located along the imaginary k-axis. For λ > β3h̄2/m, we get a
bound (κ > 0) and an antibound state (κ � 0), and for λ � β3h̄2/m, we get two antibound states.

The separable p-wave interaction is given by

V1(k, q) = −λg1(k)g1(q), (4.7)

where

g1(k) = k

k2 + β2
, (4.8)

and the t-matrix becomes [1]

t1(k, q; E) = −λ
g1(k)g1(q)

1 − �1(k0)
. (4.9)

Here

�1(ω) ≡ λ
2

π

∫ ∞

0
dk

k2(g1(k))
2

h̄2k2/2m − ω
. (4.10)

The integral �1(E) can be calculated analytically, giving in terms of k0,

�1(k0) = λ
m

h̄2

β3 + k2
0(3β + 2ik0)

(β2 + k2
0)

2
(4.11)

solving for the poles gives in terms of κ = −ik0,

κ = λ
m

h̄2 − β ±
√

λ
m

h̄2

(
λ

m

h̄2 − β

)
. (4.12)

We see that for p-waves the interaction supports bound, antibound and resonant states. The
bound state condition is

λ >
βh̄2

m
(4.13)

giving in addition an antibound state. The interaction has a branchpoint at k = 0, where the
bound and antibound states meet and move symmetrically from the imaginary axis into the
lower-half k-plane giving capture and decay resonant states. Figure 18 shows the pole trajectory
for the Yamaguchi p-wave interaction.
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Figure 18. Pole trajectory for the p-wave Yamaguchi interaction in the complex k-plane.

4.2. Expansion of the Yamaguchi eigenvalue problem on a Berggren basis generated
from the Malfliet–Tjon interaction

Here we illustrate the flexibility of the Berggren basis as an expansion basis for a more general
interaction. The Yamaguchi eigenvalue problem will be expanded on a Berggren basis, again
generated from the Malfliet–Tjon interaction. It is interesting to observe the convergence of
eigenvalues as the number of non-resonant continuum states increases. Does the fact that
theYamaguchi interaction is non-local whereas the Malfliet–Tjon interaction giving rise to the
basis is local, influence the applicability of the Berggren basis, and the convergence of the
eigenvalue problem? A numerical investigation of this is carried out below. The numerically
determined eigenvalues as a function of basis elements will be compared with the analytical
solutions of the eigenvalues.

The Hamiltonian eigenvalue problem expanded on a general Berggren basis takes the
abstract form ∑

γ

〈ϕ∗
α|T + V |ϕγ〉cγ = E

∑
γ

δγ ,αcγ , (4.14)

where the expansion coefficients cγ fulfil the completeness relation
∑

γ cγ
2 = 1. In momentum

space, the matrix elements of the kinetic and potential operators take the form

〈ϕ∗
α|T |ϕγ〉 = 2

π

∫
C+

dk k2ϕα,l(k)
h̄2

2m
k2ϕγ ,l(k) (4.15)

〈ϕ∗
α|V |ϕγ〉 = 4

π2

∫
C+

dk k2
∫

C+
dk′ k′2ϕα,l(k)Vl(k, k′)ϕγ ,l(k

′). (4.16)

We consider solutions for the l = 1 Yamaguchi interaction with β = 2 fm−1 and
varying interaction strength λ. This interaction supports bound states for λ > 2h̄2/m ≈
165.883 MeV fm−1. Table 5 gives numerical results for bound and resonant states of the
l = 1 Yamaguchi interaction. The Berggren basis was generated by the l = 1 Malfliet–Tjon
interaction given on the distorted contour CR+T

+ rotated θ = π/5 and translated Im[k] =
− sin(π/5) fm−1 ≈ −0.59 fm−1 into the fourth quadrant of the complex k-plane. The
calculations used 50 integration points along the rotated and translated parts of the contour.



The contour deformation method in momentum space 9017

Table 5. Numerical calculations of bound and resonant states of the l = 1Yamaguchi interaction of
strength λ. The Berggren basis was generated by the l = 1 Malfliet–Tjon interaction given on the
distorted contour CR+T

+ rotated θ = π/5 and translated Im[k] = −sin(π/5) fm−1 ≈ −0.59 fm−1

into the fourth quadrant of the complex k-plane. Comparison is done with exact energy values for
the bound and resonant states. λ is given in units of MeV fm and energy in units of MeV.

CDM Exact

λ Re[E] Im[E] Re[E] Im[E]

169 −4.09667119 0 −4.09667119 0
166 −0.12337977 0 −0.12337977 0
165 0.87360132 −0.12850277 0.87360132 −0.12850277
164 1.84025247 −0.39895705 1.84025247 −0.39895705
163 2.78279024 −0.75351046 2.78279024 −0.75351046
160 5.46572327 −2.17613872 5.46572327 −2.17613872

Table 6. Numerical calculations of antibound states in the l = 1 Yamaguchi interaction. The
Berggren basis was generated by the l = 1 Malfliet–Tjon interaction given on the distorted contour
C+

R+T rotated θ = 2π/3 and translated Im[k] = −sin(2π/3) fm−1 ≈ −0.87 fm−1 into the third
quadrant of the complex k-plane. Comparison is done with exact energy values for the antibound
states. Calculations used 50 integration points along the rotated and translated lines. λ is given in
units of MeV fm and energy in units of MeV.

CDM Exact

λ Re[E] Im[E] Re[E] Im[E]

168 −1.689679639 0 −1.689679639 0
167 −0.948105835 0 −0.948105835 0
166 −0.110946667 0 −0.110946633 0

The singularity structure of the Yamaguchi interaction is particularly simple, having poles
only for Im[k] = ±β. Therefore, any contour in the fourth quadrant will do. The interaction
parameters for the Malfliet–Tjon interaction, used for the Berggren basis, are the same as in
previous sections with νA = −5 supporting a resonance at E = 5.1804 − 3.1555i MeV.

Table 6 gives numerical results for antibound states in the l = 1 Yamaguchi interaction.
The Berggren basis was generated by the l = 1 Malfliet–Tjon interaction given on the distorted
contour CR+T

+ rotated θ = 2π/3 and translated Im[k] = sin(π/5) fm−1 ≈ 0.87 fm−1 into the
third quadrant of the complex k-plane. The calculations again used 50 integration points and
the same input as above. The agreement with exact results is convincing for all three cases:
bound, resonant and antibound.

5. Expansion of resonances of a Gaussian potential on a Berggren basis generated
by the Malfliet–Tjon interaction

We finally consider the frequently used local Gaussian potential

V(r) = V0 exp(−r2α2), (5.1)
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Figure 19. Plot of the absolute value of the coefficients of the Malfliet–Tjon Berggren expansion
of a resonant state generated by a Gaussian potential. The coefficients are plotted as a function of
Re[k] fm−1.

which in momentum space takes the analytic form

Vl(k, k′) = V0
π

4α2

1√
kk′ exp

(
−

(
k2 + k′2

4α2

))
Il+1/2

(
kk′

2α2

)
. (5.2)

Here Il+1/2(z) is a Bessel function of the first kind with complex arguments. In the complex
k-plane, the Gaussian potential diverges exponentially for |Im[k]| > |Re[k]|. Solving the
momentum space Schrödinger equation on a rotated contour CR

+, we get the restriction θ < π/4
on the rotation angle. On the other hand, we may choose a contour of the type CR+T

+ and this
problem is resolved, allowing for an continuation in the third quadrant of the complex k-plane.

For a range α = 1.8 fm−2 and a depth V 0 = 150 MeV for the l = 1 Gaussian
potential, the CDM gives a resonance with energy E = 0.676131964 − 0.157257363i MeV.
This resonance was calculated on the CR+T

+ contour, rotated θ = π/5 and translated
Im[k] = −sin(π/5) fm−1 ≈ 0.5878 fm−1. The Berggren basis was generated from the
l = 1 Malfliet–Tjon interaction with νA = −5.42 supporting a resonance with energy
E = 0.655473351 − 0.106928706i MeV.

Figure 19 gives the expansion coefficients of the Berggren basis as a function of the real
part of the momentum. The spike at Re[k] ≈ 0.1 fm−1 is due to the large overlap between the
resonant wavefunctions of the Malfliet–Tjon and the Gaussian interaction, respectively. The
discontinuity around Re[k] ≈ 0.7 fm−1 has no physical meaning, and is due to the discontinuity
in the deformed contour, where the rotated part goes into the translated part. From the
distribution of the expansion coefficients one sees that the major contribution from the complex
continuum occurs for Re[k] < 5 fm−1. On the basis of this observation, one would expect that
a cutoff for a given momentum Re[k] > 5 fm−1 in the Berggren basis, would not influence the
calculation of the resonant state and energy. Table 7 shows the convergence of the resonant
energy as a function of cutoff in the Berggren basis. For Re[k] > 5 fm−1 the energy has
converged satisfactorily.

Figures 20 and 21 show how the corresponding resonant wavefunction converges to
the ‘exact’ wavefunction, and the sensitivity of the resonance wavefunction to cutoff in
momentum. We observe that for a cutoff in momentum less than 5 fm−1, the tail of the
wavefunction is not that well reproduced, even though the resonant energy has converged
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Table 7. Resonant energy of the Gaussian potential discussed above as a function of cutoff in
momentum/energy in the Berggren basis generated by the Malfliet–Tjon potential. The cutoff
momentum is given in units of fm−1 and energy in units of MeV.

Cutoff Re[E] Im[E]

1 5.32123 0.53077
3 0.74272 −0.02750
5 0.67748 −0.15758

10 0.67698 −0.15742
20 0.67619 −0.15727
30 0.67614 −0.15726
40 0.67613 −0.15725
Exact 0.67613 −0.15725
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Figure 20. Plot of the real part of the resonant wavefunction generated by the Gaussian potential
discussed above. The continuous line is the exact wavefunction, the broken line is the Berggren
expanded wavefunction with a cutoff in momentum, Re[k] = 1 fm−1 and the dashed-dotted line
with a cutoff Re[k] = 0.5 fm−1.
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Figure 21. Plot of the imaginary part of the resonant wavefunction generated by the Gaussian
potential discussed above. The continuous line is the exact wavefunction, the broken line is the
Berggren expanded wavefunction with a cutoff in momentum, Re[k] = 1 fm−1 and the dashed-
dotted line with a cutoff Re[k] = 0.5 fm−1.
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satisfactorily for a cutoff Re[k] = 5 fm−1. The interior part of the momentum space resonant
wavefunction is, on the other hand, well reproduced in both cases considered. Translated into
the coordinate space picture, this reflects that in the cases of loosely bound or resonant states
the correct tail of the wavefunction is important for reproducing the correct energy.

6. Conclusions and perspectives

A generalized CDM in momentum space has been presented. The deformation of the
integration contour is generalized to rotation followed by translation in the complex k-
plane. This generalization makes it possible to handle both dilation and non-dilation invariant
potentials. We have, via chosen examples from subatomic physics, shown this to be a powerful
procedure for studying resonances and antibound states in two-body systems. The method has
also been successfully applied to the calculation of the full off-shell t-matrix.

The CDM allows for stable numerical calculations of binary bound states, resonances and
antibound states, in addition to yielding a fully complex on- and off-shell scattering matrix,
starting with a realistic nucleon–nucleon interaction. This also allows for several interesting
applications and extensions of shell model type formulations. One of the major challenges
in the microscopic description of weakly bound dripline nuclei is a proper treatment of both
the many-body correlations and the continuum of positive energies and decay channels. Such
nuclei pose a tough challenge for traditional nuclear structure methods, based essentially on
the derivation of effective interactions and the nuclear shell-model (see e.g. [40] for a review).
In the traditional approaches only bound states typically enter the determination of an effective
interaction, be it either based upon various many-body schemes or more phenomenologically
inspired approaches. Coupled with large-scale shell model studies, several properties of stable
nuclei are well reproduced. However, weakly bound nuclei have a strong coupling to unbound
states, either resonances or antibound states, as described in, for example, [4–6]. This implies
in turn that an effective interaction should reflect such couplings with the continuum, i.e. a
consistent many-body scheme should include bound states, resonances and antibound states
as well.

The aim of this work has been to establish the formalism for the free scattering case, basing
the analysis on schematic and realistic nucleon–nucleon interactions. Work on extension to
Borromean halo systems [39] in few-body cluster models with more than two constituents, is
in progress.

In forthcoming papers, we will discuss the application of binary CDM to shell model
type formulations for dripline nuclei, extensions to few-body halo models and also complex
interactions of particular relevance for nuclear reactions.
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